jueves, 27 de octubre de 2011

PROPIEDADES COLIGATIVAS DE SOLUCIONES ELECTROLITICAS

PROPIEDADES COLIGATIVAS DE SOLUCIONES DE ELECTROLITOS

Las propiedades coligativas de las soluciones dependen de la concentración total de partículas de soluto, sin importar si las partículas son iones o moléculas.

Así podemos esperar que una solución 0,1 m de NaCl tenga un total de partículas en solución igual a 0,2 m ya que como esta sal es un electrolito fuerte, disocia completamente en solución.




Para electrolitos fuertes y débiles la concentración de partículas en solución es mayor que la concentración inicial del compuesto en cuestión, por lo tanto, al determinar experimentalmente las propiedades coligativas de estos compuestos se observan desviaciones de las teóricas esperadas.
Así, por ejemplo, si tenemos una solución 0,1 m de NaCl y calculamos su punto de congelación (Tc) considerando que este compuesto es un no electrolito resulta ser:
Tc = -0,186 °C
Si consideramos al NaCl como es en realidad (electrolito fuerte), la concentración de partículas en solución (si partimos de una solución 0,1 m) será de 0,2 m, luego el punto de congelación de la solución es:
Tc = -0,372 °C
Sin embargo, Van’t Hoff determinó experimentalmente que el punto de congelación de una solución 0,1 m de NaCl era realmente -0,348 °C, una temperatura distinta a la esperada teóricamente (-0,372 °C). La diferencia entre la propiedad coligativa esperada y observada experimentalmente para los electrolitos débiles SE DEBE A LAS ATRACCIONES ELECTROSTÁTICAS ENTRE LOS IONES EN SOLUCIÓN.
A medida que los iones se mueven en la solución, los iones de cargas opuesta chocan y se unen por breves momentos. Mientras están unidos se comportan como una sola partícula llama par iónico. El número de partículas independientes se reduce y ocasiona el cambio observado en el valor calculado respecto del valor experimental. Para nuestro ejemplo calculado -0,372 °C, observado experimentalmente -0,348 °C
Este fenómeno se observa en todas las propiedades coligativas de soluciones de electrolitos. Es decir, para una solución de electrolito:
Punto de Congelación calculado > Punto de Congelación experimental
Punto de Ebullición calculado < Punto de Congelación experimental
Presión Osmótica calculado > Presión Osmótica experimental
Presión de Vapor calculada > Presión de Vapor experimental
Factor de Van’t Hoff
Una medida del grado en que los electrolitos se disocian es el factor de Van’t Hoff . Este factor es la relación entre el valor real de una propiedad coligativa y el valor calculado (considerando que la sustancia es un no electrolito)
El valor ideal de factor de Van’t Hoff para una sal puede calcularse observando la formula del compuesto. Por ejemplo:

Al factor ideal de Van’t Hoff se le simboliza por la letra  (nu), debemos considerar este factor como un valor limitante, es decir, el factor Van’t Hoff para el NaCl tiene como máximo valor = 2.
Cuando no se dispone de información acerca del verdadero valor de “i” para una solución se utiliza siempre el valor ideal () para realizar los cálculos.


Factores de Van’t Hoff para diversas sustancias a 25 °C.


En estos datos podemos observar dos tendencias.

• Primero: La dilución afecta los valores de “i” para los electrolitos “cuanto más diluida es la solución, más se aproxima i al valor limitante () de esto podemos concluir que entre más diluida este la solución el grado de apareamiento de los iones en solución también disminuye”. La carga de los iones afecta el valor de i para los electrolitos.

• Segundo: “Mientras menor sea la carga de los iones, menor es la desviación de i del valor limitante, como conclusión entre menor sea la carga de los iones disminuye el grado de apareamiento de los iones en solución.






BIBLIOGRAFIA


www.itescam.edu.mx/principal/sylabus/fpdb/recursos/r16934.DOC
Fisicoquímica. Versión SI. R.A. Albert y F. Daniels. CECSA, 1984















PROPIEDADES COLIGATIVAS DE LAS SOLUCIONES

PROPIEDADES COLIGATIVAS DE LAS SOLUCIONES


Los estudios teóricos y experimentales han permitido establecer, que los líquidos poseen propiedades físicas características. Entre ellas cabe mencionar: la densidad, la propiedad de ebullir, congelar y evaporar, la viscosidad y la capacidad de conducir la corriente eléctrica, etc.

Cada líquido presenta valores característicos (es decir, constantes) para cada una de estas propiedades. Cuando un soluto y un solvente dan origen a una solución, la presencia del soluto determina una modificación de estas propiedades con relación a su estado normal en forma aislada, es decir, líquido puro. Estas modificaciones se conocen como PROPIEDADES DE UNA SOLUCIÓN.

Las propiedades de las soluciones se clasifican en dos grandes grupos:

1.- Propiedades constitutivas: son aquellas que dependen de la naturaleza de las partículas disueltas. Ejemplo: viscosidad, densidad, conductividad eléctrica, etc.

2.- Propiedades coligativas o colectivas: son aquellas que dependen del número de partículas (moléculas, átomos o iones) disueltas en una cantidad fija de solvente. Las cuales son:

- descenso en la presión de vapor del solvente,

- aumento del punto de ebullición,

- disminución del punto de congelación,

- presión osmótica.

Es decir, son propiedades de las soluciones que solo dependen del número de partículas de soluto presente en la solución y no de la naturaleza de estas partículas.


Disminución de la presión de vapor

Si un soluto es no volátil la presión de vapor de su disolución es menor que la del disolvente puro. Así que la relación entre la presión de vapor y presión de vapor del disolvente depende de la concentración del soluto en la disolución. Esta relación está dada por la ley de Raoult, que establece que la presión parcial de un disolvente sobre una disolución está dada por la presión de vapor deldisolvente puro, multiplicada por la fracción molar del disolvente en la disolución.




Una fuerza motora en los procesos físicos y químicos es el incremento del desorden: a mayor desorden creado, más favorable es el proceso. La vaporización aumenta el desorden de un sistema porque las moléculas en el vapor no están tan cercanamente empacadas y por lo tanto tienen menos orden que las del líquido. Como en una disolución está mas desordenada que el disolvente puro, la diferencia en el desorden entre una disolución y un vapor es menor que la que se da entre un disolvente puro y un vapor. Así las moléculas del líquido tienen menor tendencia a abandonar el disolvente para transformarse en vapor.

Elevación del punto de ebullición

El punto de ebullición de una sustancia es la temperatura a la cual su presión de vapor iguala a la presión atmosférica externa. Como difieren los puntos de ebullición y de congelación de una solución hídrica de los del agua pura? La adición de un soluto no volátil disminuye la presión de vapor de la solución. Como se ve en la Fig la curva de presión de vapor de la solución cambiará hacia abajo relativo a la curva de presión de vapor del agua líquida pura; a cualquier temperatura dada, la presión de vapor de la solución es más baja que la del agua pura líquida. Teniendo en cuenta que el punto de ebullición de un líquido es la temperatura a la cual su presión de vapor es igual a 1 atm., al punto de ebullición normal del agua líquida, la presión de vapor de la solución será menor de 1 atm. Por consiguiente se necesitará una temperatura más alta para alcanzar una presión de vapor de 1 atm. Así el punto de ebullición es mayor que el del agua líquida.



Para incrementar el punto de ebullición relativo al del solvente puro, T, es directamente proporcional al número de partículas del soluto por mol de moléculas de solvente. Dado que la molalidad expresa el número de moles de soluto por 1000 g de solvente, lo cual representa un número fijo de moles del solvente. Así Tes proporcional a la molalidad.


Kb = constante de elevación del punto de ebullición normal, solo depende del solvente. Para el agua es 0.52 °C / m, por consiguiente una solución acuosa 1 m de sacarosa o cualquier otra solución acuosa que sea 1 m de partículas de soluto no volátil ebullirá a una temperatura 0.52 °C más alta que el agua pura


Reducción del punto de congelación

La presión de vapor más baja de una solución con relación al agua pura, también afecta el punto de congelamiento de la solución, esto se explica porque cuando una solución se congela, los cristales del solvente puro generalmente se separan; las moléculas de soluto normalmente no son solubles en la fase sólida del solvente. Por ejemplo cuando soluciones acuosas se congelan parcialmente, el sólido que se separa casí siempre es hielo puro, como resultado la parte del diagrama de fase en la Fig que representa la presión de vapor del sólido es la misma que para el agua líquida pura. En esta misma figura puede verse que el punto triple de la solución a una temperatura menor que el del agua pura líquida debido a que la presión de vapor más baja de la solución comparada con la del agua líquida pura.

El punto de congelación de una solución es la temperatura a la cual comienzan a formarse los cristales de solvente puro en equilibrio con la solución. Debido a que el punto triple de la temperatura de la solución es más bajo que el del líquido puro, el punto de congelamiento de la solución también será más bajo que el del agua líquida pura.

Presión osmótica y Ósmosis

Ciertos materiales, incluyendo muchas membranas de los sistemas biológicos y sustancias sintéticas como el celofán son semipermeables. Cuando se ponen en contacto con una solución, ellas permiten el paso de algunas moléculas pero no de otras. Generalmente permiten el paso de las moléculas pequeñas de solvente como el agua pero bloquean el paso de solutos más grandes o iones. El carácter semipermeable, se debe a la red de poros diminutos de la membrana.

Consideremos una situación en la cual solamente las moléculas de solvente pueden pasar a través de la membrana. Si esa membrana se coloca entre dos soluciones de diferente concentración, las moléculas de solvente se moverán en ambas direcciones a través de la membrana. Sin embargo la concentración del solvente es mayor en la solución que contiene menos soluto que en la más concentrada. Por consiguiente la tasa de paso del solvente desde la solución menos concentrada hacia la más concentrada es mayor que la velocidad en la dirección opuesta. Así hay un movimiento neto de las moléculas de solvente desde la solución menos concentrada hacia la más concentrada, este proceso se llama osmosis. Recuerde: el movimiento neto del solvente es siempre hacia la solución con la concentración de solutos más alta.



La presión necesaria para evitar la ósmosis se conoce como presión osmótica, Π, de la solución. Se encuentra que la presión osmótica obedece una ley de forma similar a la de los gases ideales:


donde V = volumen de la solución
n = número de moles de soluto
R = la constante ideal de los gases = 0.08206 L-atm /mol-K
T = temperatura en la escala Kelvin.






IMPORTANCIA DE LAS PROPIEDADES COLIGATIVAS

Las propiedades coligativas tienen tanta importancia en la vida común como en las disciplinas científicas y tecnológicas, y su correcta aplicación permite:

A) Separar los componentes de una solución por un método llamado destilación
fraccionada.

B) Formular y crear mezclas frigoríficas y anticongelantes.

C) Determinar masas molares de solutos desconocidos.

D) Formular sueros o soluciones fisiológicas que no provoquen desequilibrio hidrosalino en los organismos animales o que permitan corregir una anomalía del mismo.

E) Formular caldos de cultivos adecuados para microorganismos específicos.

F) Formular soluciones de nutrientes especiales para regadíos de vegetales en general.

En el estudio de las propiedades coligativas se deberán tener en cuenta dos características importantes de las soluciones y los solutos.

Soluciones: Es importante tener en mente que se está hablando de soluciones relativamente
diluídas, es decir, disoluciones cuyas concentraciones son 0,2 Molar, en donde teóricamente las fuerzas de atracción intermolecular entre soluto y solvente serán mínimas.

Solutos: Los solutos se presentarán como:

Electrolitos: disocian en solución y conducen la corriente eléctrica.

No Electrolito: no disocian en solución. A su vez el soluto no electrolito puede ser volátil o no volátil.






BIBLIOGRAFIA:


http://labquimica.wordpress.com/2007/08/26/los-fundamentos-las-propiedades-coligativas/
Fisicoquímica. P.W. Atkins, Addison-Wesley Iberoamericana S.A., USA, 1991

soluciones electroliticas

Soluciones electrolíticas
Es cualquier sustancia que contiene iones libres, los que se comportan como un medio conductor eléctrico. Debido a que generalmente consisten de iones en solución, las soluciones electrólitas también son conocidos como soluciones iónicas, pero también son posibles electrolitos fundidos y electrolitos sólidos
Principios
Comúnmente, los electrolitos existen como soluciones de ácidos, bases o sales. Más aún, algunos gases pueden comportarse como electrolitos bajo condiciones de alta temperatura o baja presión. Las soluciones de electrolitos pueden resultar de la disolución de algunos polímeros biológicos (por ejemplo, ADN, polipéptidos) o sintéticos (por ejemplo, poliestirensulfonato, en cuyo caso se denominan polielectrolito) y contienen múltiples centros cargados. Las soluciones de electrolitos se forman normalmente cuando una sal se coloca en un solvente tal como el agua, y los componentes individuales se disocian debido a las interacciones entre las moléculas del solvente y el soluto, en un proceso denominado solvatación. Por ejemplo, cuando la sal común, NaCl se coloca en agua, sucede la siguiente reacción:
NaCl(s) → Na+ + Cl
También es posible que las sustancias reaccionen con el agua cuando se les agrega a ella, produciendo iones. Por ejemplo, el dióxido de carbono reacciona con agua para producir una solución que contiene iones hidronio, bicarbonato y carbonato.
En términos simples, el electrolito es un material que se disuelve completa o parcialmente en agua para producir una solución que conduce una corriente eléctrica.
Las sales fundidas también pueden ser electrólitos. Por ejemplo, cuando el cloruro de sodio se funde, el líquido conduce la electricidad.
Si un electrólito en solución posee una alta proporción del soluto se disocia para formar iones libres, se dice que el electrólito es fuerte; si la mayoría del soluto no se disocia, el electrólito es débil. Las propiedades de los electrólitos pueden ser explotadas usando la electrólisis para extraer los elementos químicos constituyentes.


Importancia fisiológica
En fisiología, los iones primarios de los electrólitos son sodio (Na+), potasio (K+), calcio (Ca2+), magnesio (Mg2+), cloruro (Cl), hidrógeno fosfato (HPO42−) y bicarbonato (HCO3).
Todas las formas de vida superiores requieren un sutil y complejo balance de electrólitos entre el medio intracelular y el extracelular. En particular, el mantenimiento de un gradiente osmótico preciso de electrólitos es importante. Tales gradientes afectan y regulan la hidratación del cuerpo, pH de la sangre y son críticos para las funciones de los nervios y los músculos. Existen varios mecanismos en las especies vivientes para mantener las concentraciones de los diferentes electrólitos bajo un control riguroso.
Tanto el tejido muscular y las neuronas son considerados tejidos eléctricos del cuerpo. Los músculos y las neuronas son activadas por la actividad de electrólitos entre el fluido extracelular o fluido intersticial y el fluido intracelular. Los electrólitos pueden entrar o salir a través de la membrana celular por medio de estructuras proteicas especializadas, incorporadas en la membrana, denominadas canales iónicos. Por ejemplo, las contracciones musculares dependen de la presencia de calcio (Ca2+), sodio (Na+), y potasio (K+). Sin suficientes niveles de estos electrólitos clave, puede suceder debilidad muscular o severas contracciones musculares.
El balance de electrólitos se mantiene por vía oral o, en emergencias, por administración vía intravenosa (IV) de sustancias conteniendo electrólitos, y se regula mediante hormona, generalmente con los riñones eliminando los niveles excesivos. En humanos, la homeostasis de electrólitos está regulada por hormonas como la hormona antidiurética, aldosterona y la paratohormona. Los desequilibrios electrolíticos serios, como la deshidratación y la sobrehidratación pueden conducir a complicaciones cardíacas y neurológicas y, a menos que sean resueltas rápidamente, pueden resultar en una emergencia médica

BIBLIOGRAFIA

P.W. Atkins, J. De Paula, QUIMICA FISICA, 8ª Ed. (en castellano), Editorial Panamericana, 2008.
- I.N. Levine, FISICOQUIMICA, 5ª Edición, McGraw-Hill, 2004.
- T. Engel, P. Reid, QUIMICA FISICA, Pearson, 2006.

SOLUCIONES

SOLUCIONES:
En química, una solución o disolución (del latín disolutio) es una mezcla homogénea, a nivel molecular de una o más especies químicas que no reaccionan entre sí; cuyos componentes se encuentran en proporción que varía entre ciertos límites.
Toda disolución está formada por una fase dispersa llamada soluto y un medio dispersante denominado disolvente o solvente. También se define disolvente como la sustancia que existe en mayor cantidad que el soluto en la disolución. Si ambos, soluto y disolvente, existen en igual cantidad (como un 50% de etanol y 50% de agua en una disolución), la sustancia que es más frecuentemente utilizada como disolvente es la que se designa como tal (en este caso, el agua). Una disolución puede estar formada por uno o más solutos y uno o más disolventes. Una disolución será una mezcla en la misma proporción en cualquier cantidad que tomemos (por pequeña que sea la gota), y no se podrán separar por centrifugación ni filtración.
Un ejemplo común podría ser un sólido disuelto en un líquido, como la sal o el azúcar disuelto en agua (o incluso el oro en mercurio, formando una amalgama)
CARACTERÍSTICAS DE LAS SOLUCIONES:
Son mezclas homogéneas
La cantidad de soluto y la cantidad de disolvente se encuentran en proporciones que varían entre ciertos límites. Normalmente el disolvente se encuentra en mayor proporción que el soluto, aunque no siempre es así. La proporción en que tengamos el soluto en el seno del disolvente depende del tipo de interacción que se produzca entre ellos. Esta interacción está relacionada con la solubilidad del soluto en el disolvente. Una disolución que contenga poca cantidad es una disolución diluida. A medida que aumente la proporción de soluto tendremos disoluciones más concentradas, hasta que el disolvente no admite más soluto, entonces la disolución es saturada. Por encima de la saturación tenemos las disoluciones sobresaturadas. Por ejemplo, 100g de agua a 0ºC son capaces de disolver hasta 37,5g de NaCl (cloruro de sodio o sal común), pero si mezclamos 40g de NaCl con 100g de agua a la temperatura señalada, quedará una solución saturada.
Sus propiedades físicas dependen de su concentración:
a) Disolución HCl (ácido clorhídrico) 12 mol/L Densidad = 1,18 g/cm3
b) Disolución HCl (ácido clorhídrico) 6 mol/L Densidad = 1,10 g/cm3
Sus componentes se separan por cambios de fases, como la fusión, evaporación, condensación, etc.
Tienen ausencia de sedimentación, es decir al someter una disolución a un proceso de centrifugación las partículas del soluto no sedimentan debido a que el tamaño de las mismas son inferiores a 10 Ángstrom ( ºA ) .
El hecho de que las disoluciones sean homogéneas quiere decir que sus propiedades son siempre constantes en cualquier punto de la mezcla. Las propiedades que cumplen las disoluciones se llaman propiedades coligativas.
CLASIFICACIÓN DE LAS SOLUCIONES
POR SU ESTADO DE AGREGACIÓN
POR SU CONCENTRACIÓN
sólidas
sólido en sólido: aleaciones como zinc en estaño (latón);
gas en sólido: hidrógeno en paladio;
líquido en sólido: mercurio en plata (amalgama).
no saturada; es aquella en donde la fase dispersa y la dispersante no están en equilibrio a una temperatura dada; es decir, ellas pueden admitir más soluto hasta alcanzar su grado de saturación. Ej.: a 0ºC 100g de agua disuelven 37,5 NaCl, es decir, a la temperatura dada, una disolución que contengan 20g NaCl en 100g de agua, es no saturada.
líquidas
líquido en líquido: alcohol en agua;
sólido en líquido: sal en agua (salmuera);
gas en líquido: oxígeno en agua
saturada: en esta disolución hay un equilibrio entre la fase dispersa y el medio dispersante, ya que a la temperatura que se tome en consideración, el solvente no es capaz de disolver más soluto. Ej.: una disolución acuosa saturada de NaCl es aquella que contiene 37,5g disueltos en 100g de agua 0ºC.

gaseosas
gas en gas: oxígeno en nitrógeno;
gas en líquido: gaseosas, cervezas;
gas en sólido: hidrógeno absorbido sobre superficies de Ni, Pd, Pt, etc.
sobre saturada: representa un tipo de disolución inestable, ya que presenta disuelto más soluto que el permitido para la temperatura dada. Para preparar este tipo de disolución se agrega soluto en exceso, a elevada temperatura y luego se enfría el sistema lentamente. Estas disolución es inestable, ya que al añadir un cristal muy pequeño del soluto, el exceso existente precipita; de igual manera sucede con un cambio brusco de temperatura.
En función de la naturaleza de solutos y solventes, las leyes que rigen las disoluciones son distintas.
Sólidos en sólidos: Leyes de las disoluciones sólidas.
Sólidos en líquidos: Leyes de la solubilidad.
Sólidos en gases: Movimientos brownianos y leyes de los coloides.
Líquidos en líquidos: Tensión interfacial.
Gases en líquidos: Ley de Henry.
Por la relación que existe entre el soluto y la disolución, algunos autores clasifican las soluciones en diluidas y concentradas, las concentradas se subdividen en saturadas y sobre saturadas. Las diluidas, se refieren a aquellas que poseen poca cantidad de soluto en relación a la cantidad de disolución; y las concentradas cuando poseen gran cantidad de soluto. Es inconveniente la utilización de esta clasificación debido a que no todas las sustancias se disuelven en la misma proporción en un determinada cantidad de disolvente a una temperatura dada. Ej: a 25ºC en 100g de agua se disuelven 0,000246g de BaSO4. Esta solución es concentrada (saturada) porque ella no admite más sal, aunque por la poca cantidad de soluto disuelto debería clasificarse como diluida. Por ello es más conveniente clasificar a las soluciones como no saturadas, saturadas y sobre saturadas.

MODO DE EXPRESAR LAS CONCENTRACIONES

La concentración de las soluciones es la cantidad de soluto contenido en una cantidad determinada de solvente o solución. Los términos diluida o concentrada expresan concentraciones relativas. Para expresar con exactitud la concentración de las soluciones se usan sistemas como los siguientes:


a) Porcentaje peso a peso (% P/P): indica el peso de soluto por cada 100 unidades de peso de la solución.

b) Porcentaje volumen a volumen (% V/V): se refiere al volumen de soluto por cada 100 unidades de volumen de la solución.

c) Porcentaje peso a volumen (% P/V): indica el número de gramos de soluto que hay en cada 100 ml de solución.

d) Fracción molar (Xi): se define como la relación entre las moles de un componente y las moles totales presentes en la solución.

e) Molaridad ( M ): Es el número de moles de soluto contenido en un litro de solución. Una solución 3 molar ( 3 M ) es aquella que contiene tres moles de soluto por litro de solución.

EJEMPLO:

* Cuántos gramos de AgNO3 , se necesitan para preparar 100 cm3 de solución 1M?

Previamente sabemos que: El peso molecular de AgNO3 es: 170 g = masa de 1 mol AgNO3
y que
100 de H20 cm3 equivalen a 100 ml. H20


Usando la definición de molalidad , se tiene que en una solución 1M hay 1 mol de AgNO3 por cada Litro (1000 ml ) de H2O (solvente) es decir:



Utilizando este factor de conversión y los datos anteriores tenemos que:



Se necesitan 17 g de AgNO3 para preparar una solución 1 M

f) Molalidad (m): Es el número de moles de soluto contenidos en un kilogramo de solvente. Una solución formada por 36.5 g de ácido clorhídrico, HCl , y 1000 g de agua es una solución 1 molal (1 m)



EJEMPLO:

* Cuántos gramos de AgNO3 , se necesitan para preparar 100 cm3 de solución 1m?

Previamente sabemos que: El peso molecular de AgNO3 es: 170 g = masa de 1 mol AgNO3
y que
100 de H20 cm3 equivalen a 100 gr. H20


Usando la definición de molalidad , se tiene que en una solución 1m hay 1 mol de AgNO3 por cada kg (1000 g ) de H2O (solvente) es decir:



Utilizando este factor de conversión y los datos anteriores tenemos que:



Se necesitan 17 g de AgNO3 para preparar una solución 1 m, observe que debido a que la densidad del agua es 1.0 g/ml la molaridad y la molalidad del AgNO3 es la misma

g) Normalidad (N): Es el número de equivalentes gramo de soluto contenidos en un litro de solución.


EJEMPLO:

* Cuántos gramos de AgNO3 , se necesitan para preparar 100 cm3 de solución 1N?

Previamente sabemos que: El peso molecular de AgNO3 es: 170 g = masa de 1 mol AgNO3
y que
100 de H20 cm3 equivalen a 100 gr. H20


Usando la definición de molalidad , se tiene que en una solución 1N hay 1 mol de AgNO3 por cada kg (1000 g ) de H2O (solvente) es decir:

El peso equivalente de un compuesto se calcula dividiendo el peso molecular del compuesto por su carga total positiva o negativa.


h) Formalidad (F): Es el cociente entre el número de pesos fórmula gramo (pfg) de soluto que hay por cada litro de solución. Peso fórmula gramo es sinónimo de peso molecular. La molaridad (M) y la formalidad (F) de una solución son numéricamente iguales, pero la unidad formalidad suele preferirse cuando el soluto no tiene un peso molecular definido, ejemplo: en los sólidos iónicos.

SOLUCIONES DE ELECTROLITOS

Electrolitos:

Son sustancias que confieren a una solución la capacidad de conducir la corriente eléctrica. Las sustancias buenas conductoras de la electricidad se llaman electrolitos fuertes y las que conducen la electricidad en mínima cantidad son electrolitos débiles.

Electrolisis:

Son las transformaciones químicas que producen la corriente eléctrica a su paso por las soluciones de electrolitos.

Al pasar la corriente eléctrica, las sales, los ácidos y las bases se ionizan.

EJEMPLOS:NaCl → Na+ + Cl-
CaSO4 → Ca+2 + SO4-2
HCl → H+ + Cl-
AgNO3 → Ag+ + NO3-
NaOH → Na+ + OH-


Los iones positivos van al polo negativo o cátodo y los negativos al polo positivo o ánodo.

PRODUCTO IÓNICO DEL H2O

El H2O es un electrolito débil. Se disocia así:H2O H + + OH-

La concentración del agua sin disociar es elevada y se puede considerar constante.

Valor del producto iónico del H2O( 10-14 moles/litro).

En el agua pura el número de iones H+ y OH- es igual. Experimentalmente se ha demostrado que un litro de agua contiene una diez millonésima del numero H+ e igual de OH-; esto se expresa como 10-7 por tanto, la concentración molar de H+ se expresa asi

[H + ]= 10-7 moles/litro y [OH-] = 10-7; entonces; [H2O] = 10-7 moles / litro [H2O] = 10-14 moles/litro.

Si se conoce la concentración de uno de los iones del H2O se puede calcular la del otro.


POTENCIAL DE HIDROGENACIÓN O pH

El pH de una solución acuosa es igual al logaritmo negativo de la concentración de iones H+ expresado en moles por litro


El pOH es igual al logaritmo negativo de la concentración molar de iones OH. Calcular el pH del agua pura
Log 1.0 x 107
Log 1.0 +
log 107
= 0 + 7 = 7


el pH del agua es 7


INDICADORES

Son sustancias que pueden utilizarse en formas de solución o impregnadas en papeles especiales y que cambian de color según el grado del pH INDICADOR MEDIO ÁCIDO MEDIO BÁSICO
Fenoftaleina incoloro rojo
Tornasol rojo azul
Rojo congo azul rojo
Alizarina amarillo rojo naranja

COLOIDES

los coloides son mezclas intermedias entre las soluciones y las mezclas propiamente dichas; sus partículas son de tamaño mayor que el de las soluciones ( 10 a 10.000 Aº se llaman micelas).

Los componentes de un coloide se denominan fase dispersa y medio dispersante. Según la afinidad de los coloides por la fase dispersante se clasifican en liófilos si tienen afinidad y liófobos si no hay afinidad entre la sustancia y el medio.


Clase de coloides según el estado físico NOMBRE EJEMPLOS FASE DISPERSA MEDIO DISPERSANTE
Aerosol sólido Polvo en el aire Sólido Gas
Geles Gelatinas, tinta, clara de huevo Sólido Liquido
Aerosol liquido Niebla Liquido Gas
Emulsión leche, mayonesa Liquido Liquido
Emulsión sólida Pinturas, queso Liquido Sólido
Espuma Nubes, esquemas Gas Liquido
Espuma sólida Piedra pómez Gas Sólido


PROPIEDADES DE LOS COLOIDES

Las propiedades de los coloides son :

Movimiento browniano: Se observa en un coloide al ultramicroscopio, y se caracteriza por un movimiento de partículas rápido, caótico y continuo; esto se debe al choque de las partículas dispersas con las del medio.

Efecto de Tyndall Es una propiedad óptica de los coloides y consiste en la difracción de los rayos de luz que pasan a través de un coloide. Esto no ocurre en otras sustancias.

Adsorción : Los coloides son excelentes adsorbentes debido al tamaño pequeño de las partículas y a la superficie grande. EJEMPLO: el carbón activado tiene gran adsorción, por tanto, se usa en los extractores de olores; esta propiedad se usa también en cromatografía.

Carga eléctrica : Las partículas presentan cargas eléctricas positivas o negativas. Si se trasladan al mismo tiempo hacia el polo positivo se denomina anaforesis; si ocurre el movimiento hacia el polo negativo, cataforesis.


BIBLIOGRAFIA

P.W. Atkins, J. De Paula, QUIMICA FISICA, 8ª Ed. (en castellano), Editorial Panamericana, 2008.
- I.N. Levine, FISICOQUIMICA, 5ª Edición, McGraw-Hill, 2004.
- T. Engel, P. Reid, QUIMICA FISICA, Pearson, 2006.